

LABORATOIRE DE SPECTROCHIMIE INFRAROUGE ET RAMAN UMR 8516

Coherence lifetimes of Zeeman and hyperfine transitions in Nd:YSO measured by ESR spectroscopy

<u>R. Marino^{1,2}, O. Guillot-Noel³, J.J.L. Morton⁴, R. George⁴, A. Ferrier², B. Tumino², Ph. Goldner² and H. Vezin¹</u>

robert-marino@chimie-paristech.fr 1 Université des Sciences et Technologies de Lille 1, LASIR CNRS UMR 8009, Lille France 2 Chimie ParisTech, LCMCP CNRS UMR 7574, Paris, France 3 In memoriam 4 CAESR, Clarendon Laboratory, Department of Physics, Oxford University, United Kingdom

Claimer

- Introduction
- CW ESR
- Coherence lifetimes of Zeeman transitions
- Coherence lifetime of hyperfine transitions
- Spectral diffusion

INTRODUCTION

AN INTRODUCTION TO Nd:YSO

Space group $P2_1/c$: monoclinic 2 main sites : Site 1 : 6 + 1 oxygens R = [2.16 – 2.34; 2.61Å] Böttger, Afzelius Site 2 : 6 oxygens R = [2.16 – 2.26Å]

V3+ Nd³⁺ Er³⁺ 0.892 0.995 0.881 ¹⁴²Nd 27.2% ¹⁴³Nd 12.2% Both Zeeman ¹⁴⁴Nd 23.8% and hyperfine ¹⁴⁵Nd 8.3% transitions ¹⁴⁶Nd 17.2% ¹⁴⁸Nd 5.7% ¹⁵⁰Nd 5.6%

L. Pidol, thèse de doctorat, UPMC, 2004

CW ESR

ESR SPECTROSCOPY

is recorded

ESR SPECTROSCOPY

¹⁴⁸Nd 5.7%

¹⁵⁰Nd 5.6%

¹⁴³Nd 12.2% ¹⁴⁵Nd 8.3%

Width of \approx 3 MHz

CW ESR IN THE D_1D_2 PLANE

(1) O. Guillot-Noël et al., PRB, 74, 214409, (2006)

RELAXATION OF ZEEMAN TRANSITIONS

ANISOTROPY OF COHERENCE LIFETIMES

$T_{\rm 1}$ MEASUREMENT AS A FUNCTION OF THE TEMPERATURE

T₂ MEASUREMENT OF HYPERFINE TRANSITIONS

Looking for longest hyp. T₂, B//D1

Measured through ENDOR spectroscopy in Oxford (CAESR)

Electron Nuclear DOuble Resonance Using both µw and RF pulses to address both electronic and nuclear transitions

ENDOR

SPECTRAL DIFFUSION

PROOFS OF SPECTRAL DIFFUSION

2 first pulses create a spectral grating The grating evolves during T_W Sensitive to spectral diffusion

Inversion Recovery

Time

π pulse inverts the population The population recovers during τ Pulse is larger than Γ_{inh} Not-sensitive to spectral diffusion The values of T_1 obtained by the two different methods clearly show evidences of spectral diffusion

PROOFS OF SPECTRAL DIFFUSION

3P Echo measurements τ varies from 120 to 6400 ns

The shape and lifetime depend on $\boldsymbol{\tau}$ Another evidence of spectral diffusion

3P Echo measurements Attenuation varies from 0dB to 10dB

The shapes and lifetime do not depend on the microwave power There is no instantaneous diffusion

$$A = A_0 \times \exp\left(-\frac{T_W}{T_1}\right) \times \exp\left(-2\pi\Gamma_{eff}(T_w,\tau)\tau\right)$$
$$\Gamma_{eff}(T_w,\tau) = \Gamma_0 + \frac{1}{2}\Gamma_{SD}\left[R\tau + \left\{1 - \exp\left(-RT_W\right)\right\}\right]$$

 T_1 : Lifetime of the excited state Γ_{eff} : Time dependent effective linewidth

 Γ_0 : Linewidth in absence of SD Γ_{SD} : FWMH of dynamic distribution of transition frequencies due to dip.-dip. interactions R: rate of spectral diffusion

Access to : Major decoherence process (1 or 2 phonon, spin flip, ...) Major source of decoherence

T. Böttger *et al.*, PRB, **73**, 075101, (2006)

9 echo decays to determine 3 parameters:

 Impossible to find a set of data that allows fitting the 9 decays together

© BUT splitting into 2 sub-sets allows finding parameters

⊗ Studies are led at high temperature (6.2K)

	Part I	Part II	Exp.
T_1	1.04 ms	1.14 ms	1.27 ms
Γ ₀	43 kHz	46 kHz	22.7 kHz
$\Gamma_{\rm SD}$	3.09 MHz	3.24 MHz	≈ 3 MHz
R	3.38 kHz	3.99 kHz	1.5 kHz

- Nd³⁺ sensitive to the environment
- Other source of SD : nuclear interaction ?

$$\Gamma(t) = \frac{1}{2} \Gamma_N \sqrt{1 - \exp(-R_N t)}$$

C.W. Thiel et al., J. Lumin, 130, 1603-1609, (2010)

3P ESEEM : Electron Spin Echo Enveloppe Modulation

CONCLUSION

- Main results
 - T₁ = 1.03s @ 1.8K
 - Hyperfine T_2 of 330 μs @ 5K through coherent transfer from electronic to nuclear levels
 - Evidence of spectral diffusion
- About ESR
 - Advantage of ESR: measurement are « easy »
 - Drawback : it is a commercial spectrometer
- Perspectives:
 - Carry on at other magnetic fields
 - Study on an isotopically pure sample (145Nd)
 - Use the results to grow better crystals!

3P ESEEM : Electron Spin Echo Enveloppe Modulation

$$H = \beta_e B \cdot \tilde{g} \cdot S - \beta_n g_n B \cdot I + H^{\text{int}}$$
$$H^{\text{int}} = \frac{\mu^{Nd} \mu^Y}{R^3} - \frac{3(\mu^{Nd} \cdot R)(\mu^Y \cdot R)}{R^5} \quad \text{Dipole - dipole interaction}$$

$$I(\tau,T) = \frac{1}{2} \left[V^1 + V^2 \right]$$
 For Nd³⁺ interacting with 1 Y³⁺

$$V^{1} = 1 - \frac{k}{2} \left[1 - \cos(\omega_{2}\tau) \right] \left[1 - \cos(\omega_{1}(\tau + T)) \right]$$

$$V^{2} = 1 - \frac{k}{2} \left[1 - \cos(\omega_{1}\tau) \right] \left[1 - \cos(\omega_{2}(\tau + T)) \right]$$