

Optical storage and (RF-) dynamical decoupling in Pr³⁺:La₂(WO₄)₃

Marko Lovrić, Philippe Goldner, Dieter Suter

System and motivation

 $Pr^{3+}:La_2(WO_4)_3$

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

Dynamical Decoupling (DD)

System (S) couples to environment (E): $\mathcal{H}_0 = \mathcal{H}_S + \mathcal{H}_{SE} + \mathcal{H}_E$

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

Dynamical Decoupling (DD)

System (S) couples to environment (E): $\mathcal{H}_0 = \mathcal{H}_S + \mathcal{H}_{SE} + \mathcal{H}_E$

Can apply control operation to system only -> DD sequence(s)

 au_B

Dynamical Decoupling (DD)

System (S) couples to environment (E): $\mathcal{H}_0 = \mathcal{H}_S + \mathcal{H}_{SE} + \mathcal{H}_E$

11

$$\underbrace{ \begin{array}{c} \overbrace{\tau_{1}}}_{t_{1}} \overbrace{\tau_{1}}^{\tau_{p}} \overbrace{\tau_{1}} \overbrace{\tau_{$$

L. Viola et al, PRL 82, 2417 (1999)

G. A. Álvarez et al, Phys. Rev. A 82, 042306 (2010)

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

Optical preparation and setup

Optical preparation and setup

Optical preparation and setup

Coherent Raman Scattering with DD

Coherent Raman Scattering with DD

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

DDC ground state coherence time by CRS

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

DDC ground state coherence time by CRS

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

J technische universität dortmund

DDC ground state coherence time by CRS $= 0^{\text{DC}} \text{Ground state coherence} \text{T} = 0^{\text{DC}} \text{Ground state coherence} \text{T} = 0^{\text{DC}} \text{Green by CRS}$ $= 0^{\text{DC}} \text{Green by CRS}$

Quite promising:

___B=0mT, Hahn–Echo T₂=0.22ms

_B=(1.8, 8, 0)mT, Hahn–Echo T₂=1.5ms

- B=0mT: up to \approx 300 fold increase

B=(1.8, 8, 0)mT, PDD, t_{π} =4 μ s, T₂(τ =300 μ s)=57 ms

B=(1.8, 8, 0)mT, PDD, t_{π} =1.5 μ s, T₂(τ =80 μ s)=400 ms

B=(1.8, 8, 0)mT, KDD, t_{π} =1.5µs, T₂(τ =160µs)=22 ms

B=(1.8, 8, 0)mT, CPMG, $t_{\pi}=1.5\mu s$, $T_{2}(\tau=80\mu s)=348 ms$

- B \approx 10mT: up to \approx 230-300 fold increase

But:

 10^{3}

- quite some parameters to optimize (pulse-length/separation, B...)
- KDD not as good as expected ($B \neq 0 mT$?)

 10^{2}

RF pulse separation τ [µs]

10²

10¹

10⁰

 10^{-1}

10

Hyperfine DD-T₂ [ms]

Signal amplitude and Input-phase sensitivity

Signal amplitude and Input-phase sensitivity

Signal amplitude and Input-phase sensitivity

Optical storage "efficiency"

Optical storage "efficiency"

Optical storage "efficiency"

... simple, poor efficiency, just want to have some stored "optical" coherence...

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

- same conditions (RF, B=0mT, ...) but DD significantly less efficient !? - similar for all tested DD sequences (best achieved so far $T_2 \approx 4$ ms)

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

Freitag, 13. Mai 2011

- DD works very well for a RF-induced HF-coherence
 - increase HF-T₂ to up to 400 ms (without ZEFOZ)
 - sequences independent of "initial"-phase identified (KDD (and PDD))

- DD works very well for a RF-induced HF-coherence
 - increase HF-T2 to up to 400 ms (without ZEFOZ)
 - sequences independent of "initial"-phase identified (KDD (and PDD))
- Optical to HF storage works \approx ok
 - low (but expected) efficiency
 - input phase conserved
 - optical inputs retrievable for "storage-times" of about 10 ms (T₂ (1/e) \approx 4 ms)

- DD works very well for a RF-induced HF-coherence
 - increase HF-T2 to up to 400 ms (without ZEFOZ)
 - sequences independent of "initial"-phase identified (KDD (and PDD))
- Optical to HF storage works \approx ok
 - low (but expected) efficiency
 - input phase conserved
 - optical inputs retrievable for "storage-times" of about 10 ms (T₂ (1/e) \approx 4 ms)
- DD/RF-refocusing seems "inefficient" for optically-induced HF-coherences ?!
 - 10x smaller HF-T₂ compared to Raman heterodyne data
 - (greater) shot to shot instability

- DD works very well for a RF-induced HF-coherence
 - increase HF-T2 to up to 400 ms (without ZEFOZ)
 - sequences independent of "initial"-phase identified (KDD (and PDD))
- Optical to HF storage works \approx ok
 - low (but expected) efficiency
 - input phase conserved
 - optical inputs retrievable for "storage-times" of about 10 ms (T₂ (1/e) \approx 4 ms)
- DD/RF-refocusing seems "inefficient" for optically-induced HF-coherences ?!
 - 10x smaller $HF-T_2$ compared to Raman heterodyne data
 - (greater) shot to shot instability
- side-effect of "protocol" / optical preparation ?
 - "interference" with "wrong-class" ions, shifted in pit by RF (addresses all)

- DD works very well for a RF-induced HF-coherence
 - increase HF-T2 to up to 400 ms (without ZEFOZ)
 - sequences independent of "initial"-phase identified (KDD (and PDD))
- Optical to HF storage works \approx ok
 - low (but expected) efficiency
 - input phase conserved
 - optical inputs retrievable for "storage-times" of about 10 ms (T₂ (1/e) \approx 4 ms)
- DD/RF-refocusing seems "inefficient" for optically-induced HF-coherences ?!
 - 10x smaller $HF-T_2$ compared to Raman heterodyne data
 - (greater) shot to shot instability
- side-effect of "protocol" / optical preparation ?
 - "interference" with "wrong-class" ions, shifted in pit by RF (addresses all)
 …?
- something else?

- DD works very well for a RF-induced HF-coherence
 - increase HF-T2 to up to 400 ms (without ZEFOZ)
 - sequences independent of "initial"-phase identified (KDD (and PDD))
- Optical to HF storage works \approx ok
 - low (but expected) efficiency
 - input phase conserved
 - optical inputs retrievable for "storage-times" of about 10 ms (T₂ (1/e) \approx 4 ms)
- DD/RF-refocusing seems "inefficient" for optically-induced HF-coherences ?!
 - 10x smaller $HF-T_2$ compared to Raman heterodyne data
 - (greater) shot to shot instability
- side-effect of "protocol" / optical preparation ?
 - "interference" with "wrong-class" ions, shifted in pit by RF (addresses all)
 …?
- something else?

- DD works very well for a RF-induced HF-coherence
 - increase HF-T2 to up to 400 ms (without ZEFOZ)
 - sequences independent of "initial"-phase identified (KDD (and PDD))
- Optical to HF storage works \approx ok
 - low (but expected) efficiency
 - input phase conserved
 - optical inputs retrievable for "storage-times" of about 10 ms (T₂ (1/e) \approx 4 ms)
- DD/RF-refocusing seems "inefficient" for optically-induced HF-coherences ?!
 - 10x smaller $HF-T_2$ compared to Raman heterodyne data
 - (greater) shot to shot instability
- side-effect of "protocol" / optical preparation ?
 - "interference" with "wrong-class" ions, shifted in pit by RF (addresses all)
 …?
- something else?

Thank you!

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

Freitag, 13. Mai 2011

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

Marko Lovrić | QIP in REDS Barcelona 12.05.2011

18

