HIGH RESOLUTION AND COHERENT SPECTROSCOPY OF EUROPIUM DOPED CRYSTALS AND CERAMICS.

<u>Alban Ferrier</u>, Biagio Tumino, Julien Lejay, Philippe Goldner

Solid state Chem. Lab. Pierre et Marie Curie University, Chimie Paristech, CNRS Paris, France

Chimie ParisTech École nationale supérieure de chimie de Paris

OUTLINE

• Eu:Y₂SiO₅ single crystal

- Introduction
- Optical inhomogeneous linewidth
- Ground state hyperfine ihnomogeneous and homogeneous linewidths
- Eu: Y₂O₃ transparent ceramics
 - Introduction
 - Optical inhomogeneous and homogeneous linewidths

Chimie ParisTech École nationale supérieure de chimie de Paris

Introduction

Why $Eu: Y_2 SiO_5$ for quantum memories ?

Y₂SiO₅?

- Melt congruently but at high temperature (~2000°C)
- Doping possible by all rare earth ions
- Low nuclear spin

Eu?

ParisTech

- Long optical coherence lifetime ${}^{7}F_{0} \rightarrow {}^{5}D_{0}$
- Long ground state hyperfine coherent lifetime for ¹⁵¹Eu
- Larger hyperfine splitting for ¹⁵³Eu
- Low oscillator strength \rightarrow high dopind level required

Cristal Growth facilities at Paris

Czochralski

1000 ppm Eu: YSO boule

Mirror Furnace for ¹⁵³Eu: YSO

Cheaper – Faster \Rightarrow 3 mm diam. 5-10mm length

Inhomogeneous Linewidth I

Inhomogeneous Linewidth II

Significant variation along the same crystal boule

Inhomogeneous Linewidth III

OUTLINE

• Eu:Y₂SiO₅ single crystal

- Optical inhomogeneous linewidth
- Ground state hyperfine inhomogeneous and homogeneous linewidths
- Eu: Y₂O₃ transparent ceramics
 - Introduction
 - Optical inhomogeneous and homogeneous linewidths

Chimie ParisTech École nationale supérieure de chimie de Paris

¹⁵³Eu Raman echo measurments

Experimental setup

ParisTech

Inhomogeneous linewidth I

Inhomogeneous linewidth II

Raman decay

 T_2 (No ext B) = 9.9 ms T_2 (18G) = 23,6 ms

 T_2 (No ext B) = 10.4 ms T_2 (18G) = 15,1 ms

151Eu: YSO Alexander et al. JOSA B Vol 24 n 9 p2479 $\pm \frac{1}{2} \longrightarrow \pm \frac{3}{2}$ $\Gamma_{ihn} = 60 \text{ kHz}$ T₂ (no field) = 15.5 ± 2 ms T₂ (100 G) = 36± 4 ms

OUTLINE

High resolution and coherent spectroscopy of Eu doped low nuclear spin materials

- - * Introduction
 - Optical Thnomogeneous linewith
 - Ground state hyperfine innomogeneous linewith
 - * Hyperfine homogeneous lifetime
- Eu : Y_2O_3 transparent ceramics
 - Introduction about transparent ceramics
 - Optical Ihnomogeneous linewith
 - optical homogeneous lifetime

Low nuclear spin transparent Ceramics

Konoshima Chemical Corp

Akio Ikesue & Yan Lin Aung Nature Photonics 2, 721 - 727 (2008)

Large scale Composite materials

Density > 99,9% Cubic materials Eu: Y₂O₃ with and without additive

Are ceramics useful materials for some applications $\ :$

 $\rightarrow \! \text{Spectral}$ hole burning filtering

Low nuclear spin transparent ceramics

ParisTech

High resolution Low temperature transmission measurments

Without additive Γ_{inh} =8.6 GHz

Bulk crystal 0.1% : Eu Y₂O₃

Γ_{inh}=7 - 90 GHz

With additive Γ_{inh} = 22.7 GHz

Chimie ParisTech École nationale supérieure de chimie de Paris

G.P. Flinn Phys rev B Vol 49 p5821 1994

Homogeneous linewidth

Chimie ParisTech École nationale supérieure de chimie de Paris G.P. Flinn Phys rev B Vol 49 p5821 1994

Luisa Bausa and Mariola Ramirez from Universidad autonoma de Madrid

Ceramic without additive

Ceramic with additive

Very different grain size

Chimie ParisTech École nationale supérieure de chimie de Paris

Segregation ?

Without ADDITIVE

With ADDITIVE

Chimie ParisTech École nationale supérieure de chimie de F cnrs

Conclusion

$Eu: Y_2SiO_5$

- Improved crystal growth process
- Γ_{ihn} of the 2 hyp transition are differents $\pm \frac{1}{2} \leftrightarrow \pm \frac{3}{2} \Rightarrow 46 kHz$ whereas $\pm \frac{3}{2} \leftrightarrow \pm \frac{5}{2} \Rightarrow 106 kHz$
- T_2 hyp is long similar to the value observed for ¹⁵¹Eu
- Small magnetic field increases the T_2 hyp

$Eu: Y_2O_3$

- Γ_{ihn} additive > Γ_{ihn} without additive
- T_2 additive $< T_2$ without additive
- Very different microstructure
- No segregation

